Since the equation $y = f^{-1}(x)$ is the same as the equation x = f(y), the graphs of both equations are identical.

- ▶ To graph the equation x = f(y), we note that this equation results from switching the roles of x and y in the equation y = f(x).
- > This transformation of the equation results in a transformation of the graph amounting to reflection in the line y = x.
- ► Thus the graph of y = f⁻¹(x) is a reflection of the graph of y = f(x) in the line y = x and vice versa.
- ▶ Note The reflection of the point (x_1, y_1) in the line y = x is (y_1, x_1) . Therefore if the point (x_1, y_1) is on the graph of $y = f^{-1}(x)$, we must have (y_1, x_1) on the graph of y = f(x).
- Not that this is the same as saying that $y_1 = f^{-1}(x_1)$ if and only if $x_1 = f(y_1)$.

The graphs of $f(x) = \frac{2x+1}{x-3}$ (shown in blue) and $f^{-1}(x) = \frac{3x+1}{x-2}$ (shown in purple) are shown below.

Sketch the graphs of the inverse functions for $y = \sqrt{4x + 4}$ and $y = x^3 + 1$ using the graphs of the functions themselves shown on the left and right below respectively.

To sketch a graph of the inverse function you must draw the mirror image of the graph of the function itself in the line y = x.

We show the the graphs of the inverse functions for $y = \sqrt{4x + 4}$ and $y = x^3 + 1$ in yellow below.

Restricted Cosine

Recall the restricted cosine function which was a one-to-one function defined as

Arccos(x) or Inverse Cosine

We show the the graphs of the inverse function for the restricted cosine function in yellow below. This function is referred to as $\arccos(x)$ or $\cos^{-1}(x)$.

Note that the domain of $\operatorname{arccos}(x)$ is [-1,1] and its range is $[0,\pi]$.