Graph of f^{-1}.

Since the equation $y=f^{-1}(x)$ is the same as the equation $x=f(y)$, the graphs of both equations are identical.
> To graph the equation $x=f(y)$, we note that this equation results from switching the roles of x and y in the equation $y=f(x)$.

- This transformation of the equation results in a transformation of the graph amounting to reflection in the line $y=x$.
- Thus the graph of $y=f^{-1}(x)$ is a reflection of the graph of $y=f(x)$ in the line $y=x$ and vice versa.
∇ Note The reflection of the point $\left(x_{1}, y_{1}\right)$ in the line $y=x$ is $\left(y_{1}, x_{1}\right)$. Therefore if the point $\left(x_{1}, y_{1}\right)$ is on the graph of $y=f^{-1}(x)$, we must have $\left(y_{1}, x_{1}\right)$ on the graph of $y=f(x)$.
$>$ Not that this is the same as saying that $y_{1}=f^{-1}\left(x_{1}\right)$ if and only if $x_{1}=f\left(y_{1}\right)$.

Graph of f^{-1}.

The graphs of $f(x)=\frac{2 x+1}{x-3}$ (shown in blue) and $f^{-1}(x)=\frac{3 x+1}{x-2}$ (shown in purple) are shown below.

Graph of f^{-1}.

Sketch the graphs of the inverse functions for $y=\sqrt{4 x+4}$ and $y=x^{3}+1$ using the graphs of the functions themselves shown on the left and right below respectively.

To sketch a graph of the inverse function you must draw the mirror image of the graph of the function itself in the line $y=x$.

Graph of f^{-1}.

We show the the graphs of the inverse functions for $y=\sqrt{4 x+4}$ and $y=x^{3}+1$ in yellow below.

Restricted Cosine

Recall the restricted cosine function which was a one-to-one function defined as

$$
f(x)=\left\{\begin{array}{cc}
\cos x & 0 \leq x \leq \pi \\
\text { undefined } & \text { otherwise }
\end{array}\right.
$$

The graph of f is shown below.

Sketch the graph of $f^{-1}(x)$ known as $\arccos (x)$ or $\cos ^{-1}(x)$.

$\operatorname{Arccos}(\mathrm{x})$ or Inverse Cosine

We show the the graphs of the inverse function for the restricted cosine function in yellow below. This function is referred to as $\arccos (x)$ or $\cos ^{-1}(x)$.

$>$ Note that the domain of $\arccos (x)$ is $[-1,1]$ and its range is $[0, \pi]$.

